Influence of ice thickness and surface properties on light transmission through Arctic sea ice
نویسندگان
چکیده
The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
منابع مشابه
The spatial distribution of solar radiation under a melting Arctic sea ice cover
[1] The sea ice cover of the Chukchi and Beaufort Seas is currently undergoing a fundamental shift from multiyear ice to first‐year ice. Field observations of sea ice physical and optical properties were collected in this region during June–July 2010, revealing unexpectedly complex spatial distributions of solar radiation under the melt‐season ice cover. Based on our optical measurements of fir...
متن کاملFactors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties a...
متن کاملInvestigating Arctic Sea Ice Survivability in the Beaufort Sea
Arctic sea ice extent has continued to decline in recent years, and the fractional coverage of multi-year sea ice has decreased significantly during this period. The Beaufort Sea region has been the site of much of the loss of multi-year sea ice, and it continues to play a large role in the extinction of ice during the melt season. We present an analysis of the influence of satellite-derived ic...
متن کاملAircraft-based Estimates of Thin-ice Fraction near Sheba
The goal of the Surface Heat Budget of the Arctic Ocean (SHEBA) program is to gain knowledge of the important physical processes in, below, and above sea ice in order to improve their representation in global climate models. In order to provide the community with a test bed for evaluating sea ice model components, we are attempting to make accurate estimates of the thickness distribution for th...
متن کاملAtmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution
The simulation of Arctic sea ice and surface winds changes significantly when CCSM3 resolution is increased from T42 ( 2.8 deg) to T85 ( 1.4 deg). At T42 resolution, Arctic sea ice is too thick off the Siberian coast and too thin along the Canadian coast. Both of these biases are reduced at T85 resolution. The most prominent surface wind difference is the erroneous North Polar summer anticyclon...
متن کامل